Male androgenetic alopecia

Key words
Androgenetic alopecia
Common baldness
Patterned hair loss

Rodney D. Sinclair

Abstract
Male pattern hair loss is the most common cause of balding. The pathogenesis involves androgen, and in particular dihydrotestosterone, binding to androgen receptors in the dermal papilla of sensitive hair follicles. Hair follicle sensitivity is genetically determined and shows regional specificity. Androgen stimulation of scalp dermal papilla cells induces transforming growth factor beta (TGF-B) and results in cyclical miniaturization of the entire hair follicle. The resulting hair produced from that follicle is shorter and finer and provides less complete scalp coverage. In contrast androgen stimulation of beard dermal papilla cells produces insulin growth factor -2 (IGF-2) and results in cyclical enlargement of the entire hair follicle. The resulting hair produced from that follicle is longer and thicker and provides more complete facial skin coverage. Some degree of androgenetic alopecia is universal among ageing men, especially bitemporally, however less than half become bald in the Hippocratic sense. Although scalp hair coverage has little functional importance, it has cosmetic significance. Baldness changes the facial appearance of affected men. When that change is perceived as adverse it has the potential to produce emotional morbidity. © 2004 WPMH GmbH. Published by Elsevier Ireland Ltd.

Introduction
Androgenetic alopecia, also known as common baldness, hereditary baldness and androgenic alopecia is the most common cause of hair loss in men. It is distinctive due to the pattern of progression of the scalp hair loss. Genetically predisposed men initially develop bitemporal recession. Next they develop diffuse frontal loss and thereafter a bald patch over the vertex of the scalp. Ultimately all the hair over the crown is lost. The pathogenesis involves androgen-induced miniaturisation of terminal hairs into vellus hairs in affected regions of the scalp. Some degree of follicular miniaturisation and consequential hair loss is universal and is considered to be a physiological secondary sexual characteristic. Androgenetic alopecia only becomes a medical problem when the hair loss is excessive, premature and distressing to the patient. A number of medical treatments aimed at arresting the progression of the hair loss have become available in recent years, and surgical treatments are constantly being refined. Substantial research into the biology of androgenetic alopecia has been conducted in recent years in a number of centres around the world and is continuing.

Cause
Alopecia means hair loss. The adjective androgenetic describes the two dominant causal factors, namely genetic susceptibility and androgens.

Genetic susceptibility
A familial tendency to androgenetic alopecia is well recognized as is racial variation in the prevalence of balding [1,2]. Genetic factors modify the magnitude of the hair follicle response to circulating androgens. Those with a strong predisposition bald in their teens, and
those with a weak predisposition may not bald until they are in their 60s or 70s. Fewer than 15% of men have little or no baldness by the age of 70 [3]. Osborne, in 1916 suggested that the baldness gene behaved in an autosomal dominant manner in men and an autosomal recessive fashion in women [4]. A study in 1984 failed to show the bimodal distribution of phenotypes with clearly unaffected and clearly affected men and women as usually indicative of autosomal dominant disorders [5]. In contrast a range of phenotypes was observable that seemed to follow a normal distribution. This, together with the finding that baldness risk increases with the number of affected family members is more consistent with polygenic inheritance. Furthermore, inherited traits due to a single gene defect rarely have an incidence greater that 1:1000, whereas polygenic diseases are much more common, as in androgenetic alopecia.

A polygenic inheritance is supported by a recent Australian study that examined the frequency of baldness in the fathers of balding men [6]. Of the 54 father-son relationships, 81.5% of balding sons had fathers who had cosmetically significant balding. This figure greatly exceeded the proportion expected of an autosomal dominant pattern of inheritance. The same authors also recently described an association of male pattern baldness with a polymorphism of the androgen receptor gene on the X chromosome [7]. The androgen receptor gene Stu1 restriction fragment polymorphism was found in almost all (98.1%) young bald men, most older bald men (92.3%), but only in 77% of non-bald men. This polymorphism appears to be necessary for the development of androgenetic alopecia, but its presence in non-bald men indicated it is not sufficient for the development of androgenetic alopecia [6]. In addition several shorter triplet repeat haplotypes were found in higher frequency in bald men than in normal control subjects. These restriction fragment length polymorphism appear to be associated with a functional variant of the androgen receptor gene that is part of the polygenic inheritance of male common baldness. Of note, the androgen receptor gene is located on the X chromosome, which is passed on from mother to a male child.

Current modeling suggests the involvement of at least four genes that combine to modify the age of onset, pattern of loss and rate of progression of androgenetic alopecia [1]. Other candidate gene and chromosomal regions have been examined. They include SRDA1 and SRDA5 coding for the two variants of the 5α-reductase enzymes [7], the insulin gene [8], the aromatase gene, the gene for the Erα oestrogen receptor, the non-recombinant area of the Y chromosome, and the type II insulin-like growth factor genes [1]. To date, no association has been found between any of the above-mentioned genetic areas and the tendency to go bald.

Hormonal influences

Systemic hormonal effects

The effect androgens have on follicles is site specific. Under the influence of androgens during puberty, small vellus hair follicles in the pubic, axillary, beard and chest enlarge into large terminal hairs. The same androgens miniaturize pigmented terminal scalp hairs into non-pigmented vellus hairs, but seem to have no effect on eyebrow or occipital scalp hair [9]. There is no satisfactory explanation for these discordant events.

The evidence that eunuchs [10], patients with androgen-insensitivity syndrome [11], and 5α-reductase deficiency [12] do not bald suggests that androgenetic alopecia is induced by activation of follicular androgen receptors by dihydrotestosterone. Increased levels of dihydrotestosterone have been found in balding scalp compared with non-balding scalp [13] and androgen receptors have been found in hair follicle dermal papillae. However, the specific mechanism of the androgen effect on the hair follicle is not known.

Intrafollicular overactivity may be the result of local or systemic factors. Possible local factors include an increased number of androgen receptors, functional polymorphisms of the androgen receptor, increased local production of dihydrotestosterone, or reduced local degradation of dihydrotestosterone. Possible systemic factors are increased circulating androgens providing increased substrate for the conversion to dihydrotestosterone, or increased systemic production of dihydrotestosterone at distant sites such as the prostate gland.

Dihydrotestosterone binds the androgen receptor with five times the avidity of testos-
terone and is more potent in its ability to cause
downstream activation [14]. The conversion of
testosterone is catalysed by 5α-reductase to
dihydrotestosterone [9]. Two 5α-reductase iso-
enzymes have been characterized, based on
their different pH optima [15].

Type 1 5α-reductase is found immunohisto-
chemically in sebaceous glands, epidermis,
eccrine sweat glands, apocrine sweat glands,
and hair follicles (outer root sheath, dermal
papilla, matrix), as well as in the endothelial
cells of small vessels and the Schwann cells of
cutaneous myelinated nerves.

In the skin the activity of the type 1 5α-
reductase is concentrated in sebaceous glands
and is considerably higher in sebaceous glands
from the face and scalp than in non-acne-prone
areas. Northern blot studies revealed most
abundant type 1 mRNA in neonatal foreskin
keratinocytes, followed by adult facial sebo-
cytes, and stronger expression in dermal
papilla cells from occipital hair cells than from
beard [16]. Type 1 is also found in the liver,
adrenals and kidneys.

The type 2 enzyme has been found by immu-
nohistochemistry to be in the dermal papilla,
the inner layer of the outer root sheath, the
sebaceous ducts and proximal inner root
sheath of scalp hair follicles [17]. Regional
studies showed the type 2 mRNA present in
beard dermal papillae, but absent from occi-
pital scalp and axillary dermal papillae. The
type 2 isoenzyme in beard dermal papillae has
three times higher activity than the type 1 5α-
reductase present in the occipital scalp and
axillary dermal papillae.

The specific activity of 5α-reductase in the
hair dermal papillae exceeded those in other
hair follicle compartments (connective tissue
sheaths and outer root sheath) by a factor of at
least 14 in the scalp and at least 80 in the
beard. The beard dermal papilla cells appeared
to generate more 5α-dihydrotestosterone than
those from non-balding scalp hair follicles.
However, the individual freshly isolated intact
dermal papilla was shown to possess consider-
ably different levels of ex vivo enzyme activi-
ties [16].

Type 2 isoenzyme is also found in the pros-
tate, testis, and liver. The effect of subtype-
specific 5α-reductase inhibitors on serum dihy-
drotestosterone levels has been studied. Type 2
5α-reductase accounts for about 80% circulat-
ing dihydrotestosterone [14].

The relative contribution of circulating and
locally produced dihydrotestosterone to activa-
tion of hair follicle androgen receptors in
the balding scalp remains to be established.
Furthermore, the evidence for a link between
levels of circulating androgens and androge-
netic alopecia remains inconclusive, with very
few studies finding any association [18–20].

The severity of androgenetic alopecia cannot
be correlated with the presence or density of
terminal hairs on the trunk and limbs. There
is also no correlation with libido or
masculinity as defined by sebum excretion
rate, body hair density, bone, skin and muscle
thickness [21]. Thus it is likely that the normal
levels of systemic androgens is adequate for
the maximum production of dihydrotestoster-
one.

Local hormonal effects

Beard dermal papilla cells are known to secrete
growth-inducing autocrine growth factors in
response to testosterone, leading to an
increase in dermal papilla size and enlarge-
ment of the hair follicle and hair cortex. This
response is not seen with occipital scalp hair
follicles when subjected to the same testoster-
one challenge [20,22]. Insulin-like growth fac-
tor-1 has been identified as a major component
of secreted cytokines [23]. Similar investiga-
tions on dermal papilla cells from the balding
scalp of the stump-tailed macaque show that
testosterone inhibited the growth and prolif-
eration of keratinocytes [24].

Studies examining distribution and expres-
sion of androgen receptors have shown varying
results. Two studies show that androgen
receptors are only found in the nuclei of der-
mal papilla cells [20,25]. Another study found
more extensive follicular distribution of recep-
tors including the hair bulb [26]. Comparing
different anatomical sites, there appear to
be higher numbers of androgen receptors
in the pubic hair follicles and beard dermal
papilla cells, with occipital scalp follicles
expressing lower levels [27]. Further research
is required to explain the seemingly paradox-
ical effect androgens have on different types of
hair follicles.

Hair loss on the scalp progresses in an
orderly and reproducible pattern, and is a
function of factors intrinsic to each hair folli-
cle. In vitro experiments have shown that the
hair follicles are able to self-regulate their
response to androgens by regulating the expression of 5α-reductase and androgen receptors [27-29]. This self-regulation is postulated to produce the quantifiable difference in androgen receptor numbers [27,30] and 5α-reductase activity [28,31] that is observed between balding and non-balding areas of the scalp. This intrinsic regulation is best seen in hair transplantation experiments: occipital hairs maintain their resistance to androgenetic alopecia when transplanted to the vertex, and scalp hairs from the vertex transplanted to the forearm miniaturise at the same pace as hairs neighbouring the donor site [32].

Pathogenesis

The three key features of androgenetic alopecia pathogenesis are alteration of hair cycle dynamics, follicular miniaturisation and inflammation.

Hair cycle dynamics

Hair growth is cyclical. The hair cycle has three phases (Figure 1): anagen growth phase, catagen involutional phase and the telogen resting phase [33]. Anagen lasts for 3–5 years, catagen 2 weeks and telogen 3 months. Thus the anagen to telogen hair count is usually in the order of 12:1. Hair shedding (exogen) occurs within the telogen phase and the sub-phase of telogen that follows exogen is called the latent phase [34].

In androgenetic alopecia, the duration of anagen decreases with each cycle, whereas the length of telogen remains constant or is prolonged. This results in a reduction of the anagen to telogen ratio [1]. Balding patients often describe periods of excessive hair shedding, most noticeable while combing or washing. This is due to the relative increase in numbers of follicles in telogen.

As the hair growth rate remains relatively constant the duration of anagen growth determines hair length. Thus, with each successively foreshortened hair cycle, the length of each hair shaft is reduced. Ultimately, anagen duration becomes so short that the growing fails to achieve sufficient length to reach the surface of the skin, leaving an empty follicular pore.

In androgenetic alopecia, the latent phase is prolonged, reducing hair numbers, further contributing to the balding process [34].

Hair follicle miniaturisation

Hair follicles consist of mesenchymal and ectodermal components. The ectodermal part consists of an invagination of epidermis into the dermis and subcutaneous fat. The hair bulb contains the hair matrix which produces the hair shaft. The mesenchymal component is the dermal papilla, a small collection of specia-
lised fibroblasts that is totally surrounded by the hair bulb. In association with the changes in hair cycle dynamics, there is progressive, stepwise miniaturisation of the entire follicular apparatus (Figure 2). As the dermal papilla is central in the maintenance and control of hair growth, it is likely to be the target of androgen-mediated events leading to miniaturisation and hair cycle changes [35-37]. The constant geometric relation between the dermal papilla size and the size of the hair matrix [38] suggests that the size of the dermal papilla determines the size of the hair bulb and ultimately the hair shaft produced [39].

A greater than tenfold reduction in overall cell numbers is likely to account for the decrease in hair follicular size [40]. The mechanism by which this decrease occurs is unexplained, and may be the result of either apoptotic cell death, decreased proliferation of keratinocytes [41], cell displacement with loss of cellular adhesion leading to dermal papilla fibroblasts dropping off into the dermis, or migration of dermal papilla cells into the dermal sheath associated with the outer root sheath of the hair follicle [39].

In overall volumetric terms, change in the follicular extracellular matrix is unlikely to greatly affect follicular size. However, being a potential source of biologically active molecules, small changes in its volume may affect hair follicular function [40].

Smaller follicles result in finer hairs. The caliber of hair shafts reduces from 0.08 mm to less than 0.06 mm. This is also followed by a reduction in pigment production. On the balding scalp, transitional indeterminate hairs are the bridge between full-sized and miniaturised terminal hairs [42].

Traditional models of androgenetic alopecia show follicular miniaturization occurring in a stepwise fashion. This has recently been contested, and it is now believed that the transition from terminal to vellus hair occurs as an abrupt, large step process [43]. Either way the cross-sectional area of individual hair shafts remains constant throughout fully developed anagen [42], indicating that the hair follicle, and its dermal papilla, remain the same size. Therefore follicular miniaturization occurs between anagen cycles rather than within anagen.

This short window of androgen effect may also explain the lengthy delay experienced between clinical response and the commencement of therapy, as any pharmacological intervention will only have effect at the point of miniaturization [42]. Follicular miniaturisation leaves behind stellae as dermal remnants of the full-sized follicle. These stellae, also known as fibrous tracts or streamers, extend from the subcutaneous tissue up the old follicular tract to the miniaturised hair and mark the formal position of the original terminal follicle [44]. Arao-Perkins bodies can be seen with elastic stains within the follicular stellae. An Arao-Perkins body begins as a small cluster of elastic fibres in the neck of the dermal papilla. These are clumped in catagen and remain situated at the lowest point of origin of the follicular stellae. With the progressive shortening of anagen hair seen in androgenetic alopecia, multiple elastic clumps can be found in a stella, like the rungs of a ladder [45].
Inflammation

A moderate perifollicular, lymphohistiocytic infiltrate, perhaps with concentric layers of perifollicular collagen deposition, is present in 40% of cases of androgenetic alopecia, but only 10% of normal control subjects [44]. Occasional eosinophils and mast cells can be seen. The cellular inflammatory changes also occur around lower follicles in some cases and occasionally involve follicular stellae. The diagnostic and prognostic significance of the degree of the inflammation is not known [44].

Epidemiology in association with other disease

An estimated 30% of men developed androgenetic alopecia by the age of 30 and 50% by the age of 50 [46]. In Australia a study of 1390 men between the ages of 40 and 69 was conducted to determine the prevalence and risk factors for androgenetic alopecia. The prevalence of vertex or full baldness (Figure 3) increase with age from 31% (age 40–55) to 53% (age 65–69). A receding frontal hairline was found in 25% of men aged 40–55 and 31% aged 65–69. The factors found to be associated with baldness using unconditional logistic regression analysis were a higher weight and BMI at age 21, an early pubertal growth spurt and obesity as evidenced by waist size being in the fourth quartile at age 21 (more than 86 cm) compared with men in the first quartile (78 cm or less).

Androgenetic alopecia has, at various times, been associated with ischaemic heart disease [47–50]. These statistically significant, though weak, associations were discovered by epidemiological, cohort and case control studies. In general, severe early onset of androgenetic alopecia in young subjects before their 30s have a higher risk for ischaemic heart disease [49]. A study found that men with higher grades of androgenetic alopecia (vertex balding) have a higher risk of developing ischaemic heart disease, especially among men with hypertension or high cholesterol levels [50]. However, most of these studies were conducted by non-dermatologists and no dermatologic expertise was included for confirmation of the accuracy of these studies.

Prostate cancer has also been found to be positively associated with androgenetic alopecia in various studies [51,52]. A recent large-scale Australian case-control study found that vertex balding was associated with a 50% increase in risk of prostate cancer [52]. No increased risk was seen for frontal balding or frontal concurrent with vertex balding. However, associations with high-grade prostate cancer were found in all patterns of androgenetic alopecia with the greatest statistically significant association found in men aged 60–69 years.

No clear mechanistic link between these diseases has been found. High androgen levels have been postulated to cause both androgenetic alopecia as well as atherosclerosis and thrombosis, however other data has shown no association between baldness and established coronary risk factors [53]. An association and a pathophysiological mechanism for the link between androgenetic alopecia and prostate cancer also remains to be established but may involve the dual dependence of these conditions on dihydrotestosterone [54].

Histopathology

Histological diagnosis is rarely necessary for male androgenetic alopecia. In patients where the diagnosis is equivocal, 4 mm punch biopsies are the ideal specimen, taken from the...
vertex of the scalp. Two biopsies should be taken and one sectioned horizontally and the other vertically. Horizontal sectioning yields much information on the number and types of follicles seen, facilitating more accurate diagnosis.

The prime feature found in scalp biopsies is the reduction in the terminal anagen hair count. The apparent reduction in the number of terminal hairs is due to progressive replacement of terminal hairs with secondary pseudo-vellus hairs with residual angiofibrotic tracts [55]. Horizontal sections reveal numerous pseudo-vellus hair follicles in the papillary dermis reflecting a miniaturisation process. Hairs are not destroyed. The presence of arrector pili muscle and angiofibrotic streamers differentiates them from true vellus hairs. There is a change in the ratio of terminal to vellus hairs from greater than 6:1 to less than 4:1. Also, the anagen to telogen hair ratio reduces from 12:1 to 5:1 [45].

Others features that may be seen include follicular fibrosis and perifollicular inflammation. The fibrosis can be seen in around 10% of cases. However, fibrosis is seen in a small number of normal scalp biopsies as well. The inflammation consists of a mild to moderate peri-infundibular lymphohistiocytic inflammatory infiltrate. It is present in up to two-thirds of biopsies [56], but is a non-specific feature that is also found in up to one-third of normal scalp biopsies [45].

Clinical Syndrome

The clinical appearance of male androgenetic alopecia is universally and instantly recognizable in most cases. The progression of the hair loss occurs in an orderly manner and has been well documented [46,56] (Figure 4).

The main relevance of hair relates to socialization. Hair is an essential part of a person’s self-image and the consequences of androgenetic alopecia are predominantly psychological. Several studies show that the negative self-perception of balding patients is consistent between Western [57,58] and Asian cultures [59]. The negative effect of androgenetic alopecia is often trivialized or ignored by unaffected people [60]. However, there is evidence that...
perception by others compounds the psychological problems suffered by balding men. A Korean study of the perception of balding men by women and non-balding men found that their negative perception of men with androgenetic alopecia was similar to the psychosocial effects reported by the patients themselves [59]. Of note a perception of bald men looking less attractive was found in more than 90% of subjects surveyed. Importantly, this view was more common in women than non-balding men. Such negative perceptions may further impair the social functioning of balding men.

- Male androgenetic alopecia is inherited as a complex polygenic trait
- Androgens and in particular dihydrotestosterone are necessary for the development of hair loss in predisposed men
- The type 2 isozyme of 5α-reductase converts testosterone into dihydrotestosterone
- Oral inhibitors of 5α-reductase arrest progression of androgenetic alopecia in over 90% of men and partially reverse it in over 65%
- Hair follicle response to androgens shows regional specificity, with vertex scalp follicles miniaturizing and beard follicles enlarging
- Androgen stimulation of scalp dermal papilla cells induces TGF-β and androgen stimulation of beard dermal papilla cells produces IGF-2 as a second messenger

It is important to note however, that most affected men cope well with androgenetic alopecia, without detriment to their psychosocial function. Thus those who do seek help are likely to be in greater emotional distress and have been dissatisfied with any treatment they have received to date.

The most distressed balding men are those with more extensive hair loss, those who have very early onset and those that deem their balding as progressive, often arising from observation of their father [57].

This review article is the first part of a two-part review series. The second part will be printed in the next issue of jmhg and will cover treatment of male androgenetic alopecia.

References

